

Date Planned : / /	Daily Tutorial Sheet - 1	Expected Duration : 90 Min		
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :		

1.	State four major physical properties that can be used to distinguish between covale compounds. Mention the distinguishing features in each case.								at and ionic	
*2.	The compound which contains both ionic and covalent bonds is:								(1979)	
2.	(A)	NH ₄ Cl	(B)	CsBr ₃	(C)	KCN	(D)	SiO ₂	(1373)	
3.		•		o o				2	nivalent. The	
		Element X is strongly electropositive and element Y is strongly electronegative. Both are univalent. The compound formed would be: (1980)								
	(A)	X^+Y^-	(B)	X^-Y^+	(C)	X - Y	(D)	$\mathbf{X} \to \mathbf{Y}$		
*4.	Which of the following compound is covalent?								(1980)	
	(A)	${ m SiO}_2$	(B)	S_8	(C)	CaC_2	(D)	Na ₂ S		
5.	If a m	If a molecule MX_3 has zero dipole moment, the sigma bonding orbitals used by M (atomic number < 21)								
	are:								(1981)	
	(A)	pure p	(B)	sp-hybridised	(C)	sp ² -hybrid	dised (D)	sp ³ -hybrid	ised	
6.	Pair	of molecules	which	forms strong	est in	termolecular	hydrogen	bonds is	,	
	(SiH $_{\!4}$ and SiF $_{\!4}$ acetone and $$ CHCl $_{\!3}$, formic acid and acetic acid)							(1981)		
7.	The ar	ngle between two	covalen	t bonds is maxin	num in _	(CH	H_4 , H_2O , CO_2)	(1981)	
8.		Hybrid orbita	als of nit	rogen atom are i	nvolved	in the format	ion of ammo	nium ion.	(1982)	
9.	The ion that is isoelectronic with CO is:								(1982)	
	(A)	CN^-	(B)	O_2^+	(C)	O_2^-	(D)	N_2^+		
10.	Amon	Among the following, the linear molecule is: (198								
	(A)	CO_2	(B)	NO_2	(C)	SO_2	(D)	${\rm ClO}_2$		
11.	There	are π b	onds in a	a nitrogen molec	ule.				(1982)	
12.	Which	Which one among the following does not have the hydrogen bond? (1983)								
	(A)	phenol	(B)	liquid NH_3	(C)	water	(D)	HCl		
13.	Write the Lewis dot structural formula for each of the following. Give also, the formula of a neutral molecule, which has the same geometry and the same arrangement of the bonding electrons as in each of the following. An example is given below in the case of H_3O^+ and NH_3 .									
	(i)	O_2^{2-}	(ii)	CO_3^{2-}	(iii)	CN^-	(iv)	NCS-	(1983)	
14.		2	, ,	3			` ,		(1983)	
14.	Carbon tetrachloride has no net dipole moment because of: (A) Its planar structure									
	(B)	-								
	(C)									
	(D)									
15.	Linear	near overlapping of two atomic p -orbitals leads to a sigma bond. (1)								